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Abstract. We apply the strategy of regions within dimensional regularization to find functions involved in
evolution equations which govern the asymptotic dynamics of the Abelian form factor and four-fermion
amplitude in the SU(N) gauge theory in the Sudakov limit up to the next-to-leading logarithmic approx-
imation. The results are used for the analysis of the dominant electroweak corrections to the fermion-
antifermion pair production in the e+e− annihilation at high energy.

1 Introduction

The asymptotic behavior of various amplitudes in the Su-
dakov limit has been investigated in QED and QCD, with
summation of the leading double [1–4] and subleading [5–
11] logarithms. Evolution equations that govern the dy-
namics of the amplitudes in the Sudakov limit have been
obtained in [6–8,10]. In the present paper, we apply this
approach to the next-to-leading analysis of the Abelian
form factor and the four fermion amplitude in the SU(N)
gauge theory. We evaluate functions that enter the evolu-
tion equations in the next-to-leading logarithmic approx-
imation by using, as an input, asymptotic expansions of
one-loop diagrams. Solving these equations we sum up the
leading and subleading Sudakov logarithms. The expan-
sions of one-loop diagrams are obtained by use of the so-
called generalized strategy of regions [12] (see also [13])
which enables us to systematically identify the nature of
various contributions and the origin of logarithms. This
strategy is based on expanding integrands of Feynman in-
tegrals in typical regions and extending the integration
domains to the whole space of the loop momenta so that
a crucial difference with respect to the standard approach
[6–10] is the absence of cut-offs that specify the regions in
individual terms of the expansions. This approach is ap-
plied within dimensional regularization [14] when all inte-
grals without scale (not only massless vacuum integrals)
are put to zero.

We apply our results for the subleading Sudakov loga-
rithms to the analysis of the dominant electroweak correc-
tions to the process of the fermion-antifermion pair pro-
duction in the e+e− annihilation. In the standard model
of weak interactions the W and Z bosons get their masses
via the Higgs mechanism and the Sudakov logarithms nat-
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urally appear in the virtual electroweak corrections [15].
They grow rapidly with energy and become dominant in
the TeV region available at the LHC or the Next Lin-
ear Collider. The analysis of the Sudakov corrections is
thus of high importance for the next generation of accel-
erators. The leading and subleading electroweak Sudakov
logarithms were discussed in [16,17] in one loop approxi-
mation. The effect of higher order leading logarithms was
estimated in [18] by computing, in a physical gauge, a con-
tribution related to the multiple virtual Z and W bosons
exchanges. A complete analysis of the leading logarithms
in exclusive and inclusive electroweak processes was done
in [19] on the basis of the infrared evolution equation
approach. The subleading Sudakov logarithms, however,
turn out to be significant and should be taken into ac-
count to get a reliable estimate of high order corrections.

The paper is organized as follows. In the next section,
the Abelian form factor is analyzed in two typical Sudakov
type regimes. The analysis is then extended in Sect. 3 to
the four-fermion amplitude. The electroweak Sudakov cor-
rections are considered in Sect. 4. We present our conclu-
sions in the last section.

2 The Abelian form factor
in the Sudakov limit

The (vector) form factor which determines the amplitude
of the fermion scattering in the external Abelian field in
the Born approximation can be written as follows

FB = ψ̄(p2)γµψ(p1) , (1)

where the four-vector index on the left hand side is sup-
pressed, p1 is incoming and p2 is outgoing momentum.

There are two “standard” regimes of the Sudakov limit
s = (p1 − p2)2 → −∞ [1,2]:
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(i) On-shell massless fermions, p2
1 = p2

2 = 0, and gauge
bosons with a small non-zero mass M2 � −s. Let us
choose, for convenience, p1,2 = (Q/2, 0, 0,∓Q/2) so that
2p1p2 = Q2 = −s.

(ii) The massless gauge bosons and off-shell massless
fermions p2

1 = p2
2 = −M2, M2 � −s. We choose p1 =

p̃1,2 − (M2/Q2)p̃2,1, where p̃1,2 are defined as p1,2 in the
regime (i).

The asymptotics of the form factor in the Sudakov
limit can be found by solving the corresponding evolu-
tion equation [6]. For the non-Abelian gauge theory, this
equation was first derived in [7] by factorizing collinear
logarithms in the axial gauge. In the first regime, it reads

∂

∂ lnQ2F

=

[∫ Q2

M2

dx
x

γ(α(x)) + ζ(α(Q2)) + ξ(α(M2))

]
F . (2)

Its solution is

F = F0(α(M2)) exp

{∫ Q2

M2

dx
x

×
[∫ x

M2

dx′

x′ γ(α(x′)) + ζ(α(x)) + ξ(α(M2))
]}

. (3)

A generalization of (2) to the regime (ii) was found in [10]:

∂

∂ lnQ2F =
[∫ Q2

M4/Q2

dx
x

γ(α(x)) + ζ(α(Q2))

+ζ ′(α(M4/Q2)) + ξ(α(M2))
]
F . (4)

Its solution is

F = F0(α(M2)) exp

{∫ Q2

M2

dx
x

×
[∫ x

M2

dx′

x′ γ(α(x′)) + ζ(α(x)) + ξ(α(M2))
]

+
∫ M2

M4/Q2

dx
x

[∫ M2

x

dx′

x′ γ(α(x′)) + ζ ′(α(x))

]}
. (5)

The functions F0 and ξ are, generally, different in the
two regimes. We are interested in the next-to-leading log-
arithms. Therefore we should keep renormalization group
corrections to the leading logarithmic approximation as
well as single infrared and renormalization group loga-
rithms. In this approximation, the form factor (i) takes
the form

F = F0(α) exp

[∫ Q2

M2

dx
x

∫ x

M2

dx′

x′ γ(α(x′))

+(ζ(α) + ξ(α)) ln (Q2/M2)

]
(6)

and, in the regime (ii), we have

F = F0(α) exp

{∫ Q2

M2

dx
x

∫ x

M2

dx′

x′ γ(α(x′))

+
∫ M2

M4/Q2

dx
x

∫ M2

x

dx′

x′ γ(α(x′))

+(ζ(α) + ζ ′(α) + ξ(α)) ln (Q2/M2)

}
. (7)

All the functions in the exponent have to be computed in
one loop, and the one loop running of α in the argument of
the γ function should be taken into account. Note that in
the next-to-leading order we cannot separate the functions
ζ and ξ but we will see that ζ ′ vanishes in one loop.

In the covariant gauge, the self energy insertions to the
external fermion lines do not give Q-dependent contribu-
tions. The one loop calculation of the vertex correction
gives

F =
α

2π
CF (−V0 + 2V1 + 2(1 − 2ε)V2 − V ′

2)FB , (8)

where CF = (N2 − 1)/(2N) is the quadratic Casimir op-
erator of the fundamental representation of SU(N) group
and the functions involved in are given by∫

ddk
(k2 − 2p1k)(k2 − 2p2k)(k2 − M2)

= iπd/2e−γEεs−1V0 ,∫
ddk kµ

(k2 − 2p1k)(k2 − 2p2k)(k2 − M2)

= iπd/2e−γEεs−1(p1 + p2)µV1 ,∫
ddk kµkν

(k2 − 2p1k)(k2 − 2p2k)(k2 − M2)

= iπd/2e−γEε

[
gµνV2 +

p1µp2ν + (µ ↔ ν)
s

V ′
2

]
. (9)

in the regime (i). The corresponding relations for the
regime (ii) are obtained from (9) by the following sub-
stitution

(k2 − 2p1k)(k2 − 2p2k)(k2 − M2)
→ (k2 − 2p1k − M2)(k2 − 2p2k − M2)k2 , (10)

with another set of the functions V involved. We omit i0
in k2 − 2p1k + i0, etc. for brevity. Here γE is the Euler
constant. We work in dimensional regularization [14] with
d = 4− 2ε. We also usually omit the factor (µ2)ε per loop
and write it down only in the argument of the renormaliza-
tion group logarithm. Note that only the tensor structures
giving unsuppressed contributions to the form factor are
kept in the representation of the third integral.

To expand these integrals in the limit Q2 � M2 we
apply a generalized strategy of regions formulated in [12]
and discussed using characteristic two-loop examples in
[13]:
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– Consider various regions of the loop momenta and ex-
pand, in every region, the integrand in Taylor series
with respect to the parameters that are there consid-
ered small;

– Integrate the expanded integrand over the whole inte-
gration domain of the loop momenta;

– Put to zero any scaleless integral.
The following regions happen to be typical in the Su-

dakov limit [20]:

hard (h): k ∼ Q ,

1-collinear (1c): k+ ∼ Q, k− ∼ M2/Q , k ∼ M ,

2-collinear (2c): k− ∼ Q, k+ ∼ M2/Q , k ∼ M ,

soft (s): k ∼ M ,

ultrasoft (us): k ∼ M2/Q .

Here k± = k0 ± k3, k = (k1, k2). We mean by k ∼ Q, etc.
that any component of kµ is of order Q.

Keeping the leading power in the expansion in the limit
Q2/M2 → ∞ we have in the regime (i)1

V h
0 =

1
ε2

− 1
ε
ln (−s) +

1
2
ln2 (−s) − π2

12
,

V c
0 = − 1

ε2
+

1
ε
ln (−s) − ln (M2) ln (−s)

+
1
2
ln2 (M2) +

5π2

12
,

V0 =
1
2
ln2
( −s

M2

)
+

π2

3
; (11)

V h
1 = −1

ε
+ ln (−s) − 2 ,

V c
1 =

1
ε

− ln (M2) + 1 ,

V1 = ln
( −s

M2

)
− 1 ; (12)

V2 = V h
2 =

1
4

(
1
ε

− ln
(−s

µ2

)
+ 3
)

,

V ′
2 = V ′

2
h =

1
2

. (13)

We denote by the index c the sum of the 1c and 2c contri-
butions. The pole in (13) is of ultraviolet nature. It is not
canceled by the collinear or ultrasoft contributions. Note
that the corresponding ultraviolet renormalization group
logarithm ln

(−s/µ2
)
contributes only to the function ζ.

The hard part in the regime (ii) is the same. The new
ingredients read

V c
0 = − 2

ε2
+

2
ε
ln (M2) − ln2 (M2) +

π2

6
,

V us
0 =

1
ε2

+
1
ε

(
ln (−s) − 2 ln (M2)

)
+

1
2
ln2 (−s)

−2 ln (M2) ln (−s) + 2 ln(M2) +
π2

4
,

1 In fact we do not need, in the LO and NLO, finite parts
present in these and similar results. They would be, however,
needed for the NNLO calculations

V0 = ln2
( −s

M2

)
+

π2

3
; (14)

V c
1 =

1
ε
+ 2 − ln (M2) ,

V1 = ln
( −s

M2

)
. (15)

Soft regions generate only zero contributions (at least in
the leading power).

From the one-loop result we find

γ(α) = −CF
α

2π
. (16)

Moreover it is clear from the above expressions that in
the regime (i) the total double logarithms of Q come from
the hard region while in the regime (ii) one half of the
double logarithmic contribution comes from the ultrasoft
region. This explicitly determines the scale of the coupling
constant in the second order logarithmic derivative of the
form factor in Q. It is Q in the regime (i) and M in the
regime (ii). Furthermore, all the Q dependent terms in the
ultrasoft contribution of (14) are related to the γ term and
therefore ζ ′(α) = 0. At the same time we cannot distin-
guish, in the one loop approximation, the contribution to
the functions ζ and ξ coming from the collinear region be-
cause this region includes both Q and M scales. For the
sum of these functions we find

ζ(α) + ξ(α) = 3CF
α

4π
. (17)

To complete the Q-independent part of the one loop cor-
rections to the form factor one has to include the fermion
wave function renormalization determined by the self en-
ergy insertions to the external lines. In the regime (i) this
brings the factor

1 + CF
α

4π

(
−1

ε
+ ln

(
M2

µ2

)
+

1
2

)
(18)

and in the regime (ii) this gives

1 + CF
α

4π

(
−1

ε
+ ln

(
M2

µ2

)
− 1
)

. (19)

The ultraviolet poles of (18, 19) cancel the ultraviolet pole
in the first line of (13) due to Ward identity and non-
renormalization property of the conserved vector current.
Finally, in the NLO logarithmic approximation, we find
the form factor (i) to be

F = FB

(
1 − CF

α

2π

(
7
2
+

2π2

3

))
exp

{
CF

2π

[
−
∫ Q2

M2

dx
x

×
∫ x

M2

dx′

x′ α(x′) + 3α ln (Q2/M2)

]}
(20)

and the form factor (ii) to be

F = FB

(
1 − CF

α

2π

(
1 +

2π2

3

))
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× exp

{
CF

2π

[
−
∫ Q2

M2

dx
x

∫ x

M2

dx′

x′ α(x′) −
∫ M2

M4/Q2

dx
x

×
∫ M2

x

dx′

x′ α(x′) + 3α ln (Q2/M2)

]}
. (21)

The single logarithmic term in the exponents of (20, 21)
has the following decomposition

3 ln (Q2/M2)
= 4 ln (Q2/M2)(IR) − ln (Q2/M2)(RG) , (22)

where we explicitly separate the infrared and renormaliza-
tion group2 logarithms which are related to V1 and V2 inte-
grals correspondingly. These logarithms are of essentially
different nature (see a discussion below). Equations (20,
21) are in agreement with the result of [9,10].

It is useful to distinguish the soft and collinear poles
in ε (resulting in logarithms) in the hard contribution.
The collinear logarithms in a physical (Coulomb or ax-
ial) gauge originate only from the self energy insertions
into the external fermion lines [4,6–8,21–23] and there-
fore are universal i.e. independent of specific processes. In
contrast to the soft divergences (i.e. infrared divergences
that are local in momentum space), the divergences of
this type arise from the integration over angle variables.
Consider, for example, the integral V1. The power count-
ing tells us that there is no soft divergence in this in-
tegral (we have k5 in the numerator and only k4 in the
denominator). However, for non-zero k with k2 ∼ 0 which
is collinear to p1 or p2 (when p1k ∼ 0 or p2k ∼ 0),
the integrand blows up. This follows from the fact that
the factor 1/((k2 − 2pk)k2), with any p2 = 0, generates
collinear divergences. When integrating this factor in k0,
take residues in the upper half plane. For example, taking
a residue at k0 = −|!k| leads to an integral with 1/(pk) =
1/(p0|!k|(1−cos θ)) where θ is the angle between the spatial
components. Thus, for small θ, we have a divergent inte-
gration over angles d cos θ/(1− cos θ) ∼ dθ/θ. The second
residue generates a similar divergent behaviour — this can
be seen by the change k → p − k.

Within the method of regions the total divergence of
the collinear region in general cancels both the soft and
collinear poles of the hard part. Hence it is not straight-
forward to separate the collinear logarithms. Let us note
that the collinear divergences (but not the soft ones) can
be regularized by introducing a finite fermion mass. The
reason is that the light-like vector k cannot be collinear
to the space-like vector pi in this case. This enables us
to distinguish the soft and collinear poles. Introducing a
small fermion mass m but keeping zero gauge boson mass
we get the collinear poles in the hard part canceled by the
poles of the contribution from the collinear region leaving

2 Although this logarithm originates from the integration
over the virtual momentum region between M and Q scales and
does not depend on µ we call it “renormalization group” one
because it is directly related and can be read off the renormal-
ization group properties of the Abelian vertex and the fermion
wave function

the logarithms while the soft poles in the hard part are
not canceled. Thus one can determine the origin of the
poles in the hard part and therefore the origin of the log-
arithms. For example, in the hard part of the integral V1
the pole is of the collinear origin since it is canceled in the
regime m �= 0, M = 0 by

V c
1 =

1
ε

− ln (m2) + 2 . (23)

Thus the single infrared logarithm in (22) is of collinear
origin and therefore is universal. We should emphasize
that this is not true for the renormalization group loga-
rithm of this equation which depends on a specific ampli-
tude and a model. For example it is different for the scalar
form factor or for the vector form factor in a model with
an additional Yukawa interaction of the fermions with the
scalar bosons.

A less trivial example is the integral V0. In the hard
part of V0 in this regime, the collinear part of the double
pole is canceled by

V c
0 = − 1

ε2
+

1
ε
ln (m2) − 1

2
ln2 (m2) − π2

12
(24)

and transforms into the logarithm of s/m2 but the soft
single pole is left

V0 = −1
ε
ln
(−s

m2

)
+ln

(−s

m2

)
ln (−s)−1

2
ln2
(−s

m2

)
−π2

6
.

(25)

3 The four fermion amplitude

We study the limit of the fixed-angle scattering when all
the invariant energy and momentum transfers of the pro-
cess are much larger than the typical mass scale of internal
particles |s| ∼ |t| ∼ |u| � M2. Besides the extra kinemat-
ical variable the analysis of the four fermion amplitude is
more complicated by the presence of different “color” and
Lorentz structures. The Born amplitude, for example, can
be expanded in the basis of color/chiral amplitudes

AB =
ig2

s
Aλ =

ig2

s
TF

(
− 1

N

(
Ad
LL +Ad

LR

)
+Ac

LL

+Ac
LR + (L ↔ R)

)
, (26)

where

Aλ = ψ̄2(p2)taγµψ1(p1)ψ̄4(p4)taγµψ3(p3) ,

Ad
LL = ψ̄2

i
Lγµψ1

i
Lψ̄4

j
Lγµψ3

j
L ,

Ac
LR = ψ̄2

j
Lγµψ1

i
Lψ̄4

i
Rγµψ3

j
R (27)

and so on. Here ta is the SU(N) generator, p1, p3 are
incoming and p2, p4 outgoing momenta so that t = (p1 −
p4)2 and u = (p1 + p3)2 = −(s + t). For the moment we
consider a parity conserving theory. Hence only two chiral
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amplitudes are independent, for example, LL and LR3.
Similarly only two color amplitudes are independent, for
example, λ and d.

Let us first compute the one loop corrections in the
regime (i). The total contribution of the vertex type dia-
grams is

α

π

(
CF (−V0 + 2V1) +

CA

2
V0 + . . .

)
AB , (28)

where the ellipsis stands for the contribution without in-
frared logarithms. In the vertex correction involving the
gauge boson selfcoupling, a contribution of the form (23)
appears with m replaced by M and we have used the fact
that the pole (logarithmic) term of V c

1 is the same both
in (23) and (12).

The direct (uncrossed) box gives

ig2

s

α

4π

[
(5B0 + 3B1 + 4B2 − 3B3 − 6B4 + 2B5)

×
{(

CF − TF
N

)
ψ̄2t

aγµψ1ψ̄4t
aγµψ3

+CF
TF
N

ψ̄2γµψ1ψ̄4γµψ3

}
− (3B0 +B1 − B3 − 2B4 + 2B5)

×
{(

CF − TF
N

)
ψ̄2t

aγµγ5ψ1ψ̄4t
aγµγ5ψ3

+CF
TF
N

ψ̄2γµγ5ψ1ψ̄4γµγ5ψ3

}]
, (29)

where TF = 1/2 is the index of the fundamental represen-
tation,

B0 = −is J(1, 1, 1, 1, 1) , B1 = st J(1, 2, 1, 1, 1) ,
B2 = st J(1, 1, 2, 1, 1) , B3 = st J(1, 3, 1, 1, 2) ,
B4 = st J(2, 1, 2, 1, 2) , B5 = s2 J(1, 1, 2, 2, 2) , (30)

and the functions J(a1, a2, a3, a4, n) are proportional to
scalar box integrals with shifted dimensions:

J(a1, a2, a3, a4, n)

= i−a1−a2−a3−a4−1+d/2+n
∏
i

(ai − 1)!

×
∫ {

dd+nk
}/{

(k2)a1(k2 − 2p1k − m2)a2

×(k2 − 2p2k − m2)a3(k2 − 2(p1 − p4)k + t)a4

}
. (31)

We apply the generalized strategy of regions to obtain a
table of asymptotic expansions of the basic integrals in the
leading power. Note that, besides the hard contribution,
there are two groups of the 1c, 2c and us-contributions
corresponding to two choices of the loop momentum when
it is considered to be the momentum flowing through one

3 A translation to the SM with the different structures of the
amplitudes for different chiralities will be considered in Sect. 4

of the two gauge boson lines of the given box. Keeping
terms with the leading and subleading logarithms we have

B0 = B5 = B1 − B3 − 2B4 = 0 , (32)

Bh
2 (s, t) = − 1

ε2
+

1
ε
ln (−t) +

1
2
ln2 (−s) − ln (−s) ln (−t) ,

Bc
2(s, t) =

1
ε2

− 1
ε
ln (−t) − ln

(
M2) ln (−t) − 1

2
ln2 (M2) ,

B2(s, t) =
1
2
ln2
( −s

M2

)
+ ln

( −s

M2

)
ln
(

t

s

)
, (33)

and the direct box contribution reads

− ig2

s

α

π
B2(s, t)

((
CF − TF

N

)
Aλ + CF

TF
N

Ad

)
. (34)

The crossed box contribution can be obtained in the same
way:

ig2

s

α

π
B2(s, u)

((
CF − TF

N
− CA

2

)
Aλ + CF

TF
N

Ad

)
,

(35)
where CA = N is the quadratic Casimir operator of the
adjoint representation. The rest of the one loop logarith-
mic contributions from the vertex corrections and the self-
energy insertions are of the renormalization group nature.
In addition to the vertex and external fermion self-energy
contributions considered in the previous section the renor-
malization group logarithms set the scale of g in the Born
amplitude to be Q.

The total one loop correction in the logarithmic ap-
proximation reads

ig2(Q2)
s

α

2π

[{
−CF ln2

( −s

M2

)
+
(
3CF − CA ln

(u
s

)

+2
(
CF − TF

N

)
ln
(u
t

))
ln
( −s

M2

)}
Aλ

+
{
2
CFTF
N

ln
(u
t

)
ln
( −s

M2

)}
Ad

]
. (36)

Note that the next-to-leading logarithms do not depend
on chirality and are the same both for the LL and LR
amplitudes.

Now the collinear logarithms can be separated from the
total one-loop correction. For each fermion-antifermion
pair, they form the exponential factor found in the previ-
ous section (20). This factor in addition incorporates the
renormalization group logarithms which are not absorbed
by changing the normalization scale of the gauge coupling.
The rest of the single logarithms in (36) is of the soft na-
ture. Let us denote by Ã the amplitude with the collinear
logarithms factored out. It can be represented as a vector
in the basis Aλ, Ad and satisfies the following evolution
equation [8,24]

∂

∂ lnQ2 Ã = χ(α(Q2))Ã , (37)

where χ is the matrix of the “soft” anomalous dimensions.
From (37) we find the elements of this matrix to be, in
units of α/(4π),
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χλλ = −2CA ln
(u
s

)
+ 4

(
CF − TF

N

)
ln
(u
t

)
,

χλd = 4
CFTF
N

ln
(u
t

)
,

χdλ = 4 ln
(u
t

)
,

χdd = 0 . (38)

The solution of (37) reads

Ã = A0
1(α(M

2)) exp

[∫ Q2

M2

dx
x

χ1(α(x))

]

+A0
2(α(M

2)) exp

[∫ Q2

M2

dx
x

χ2(α(x))

]
, (39)

where χi are eigenvalues of the χ matrix and A0
i are Q-

independent vectors. Note that in higher orders the ma-
trices χ for different values of Q do not commute and the
solution is given by the path-ordered exponent [8].

Equations (33) imply that only the hard parts con-
tribute to (37). This fixes the scale of α in this equation
to be Q. By this reason the matrix (38) is the same in
the regime (ii). Hence in the next-to-leading logarithmic
approximation the difference between the corrections to
the four-quark amplitude in the regimes (i) and (ii) is the
one between the factors (20) and (21).

In the Abelian case, there are no different color ampli-
tudes and there is only one anomalous dimension

χ = 4 ln
(u
t

)
. (40)

4 Sudakov logarithms
in electroweak processes

We are interested in the process f ′f̄ ′ → ff̄ . In the Born
approximation, its amplitude is of the following form

AB =
ig2

s

∑
I, J=L, R

(
T 3
f ′T 3

f + t2W
Yf ′Yf
4

)
Af ′f
IJ , (41)

where
Af ′f
IJ = f̄ ′

Iγµf
′
I f̄JγµfJ , (42)

tW = tan θW with θW being the Weinberg angle and Tf
(Yf ) is the isospin (hypercharge) of the fermion which de-
pends on the fermion chirality.

To analyze the electroweak correction to the above pro-
cess we use the approximation with the W and Z bosons
of the same mass M and massless quarks and leptons.
A fictitious photon mass λ has to be introduced to reg-
ularize the infrared divergences. Let us consider first the
equal mass case λ = M , where we can work in terms of the
fields of unbroken phase. In this case the only difference
with the model considered in the previous sections is in the
presence of the scalar particles in the Lagrangian of the
electroweak model. However, due to helicity conservation

in high energy processes the infrared logarithms induced
by a scalar particle exchanges are power suppressed in the
Sudakov limit. The only effect of the scalar bosons is the
modification of the ultraviolet renormalization group log-
arithms. In the massless quark approximation the Higgs
boson couples only to the gauge field and, therefore, leads
to the modification of the β-function. Thus one can insert
the mass into the gauge boson propagators “by hand” to
investigate the leading in s−1 behaviour of the amplitudes
leaving aside the Higgs mechanism of the gauge boson
mass generation. This approach is gauge invariant as far as
power unsuppressed terms are considered. Therefore the
result of Sects. 2 and 3 for the regime (i) can be directly
applied to the electroweak processes by projecting on a
relevant initial/final state. For each fermion-antifermion
pair the factor (20) takes the form

exp

[
−
(
Tf (Tf + 1) + t2W

Y 2
f

4

)
(L(s) − 3l(s))

]
, (43)

where

L(s) =
g2

16π2 ln2
( −s

M2

)
,

l(s) =
g2

16π2 ln
( −s

M2

)
, (44)

and we neglect the running of the coupling constant in the
integral in (20) but fix the scale of the coupling g and tW g
in the double logarithmic contribution to be Q. The soft
anomalous dimension for I and/or J = R is Abelian and,
in units of g2/(16π2), reads

χ = t2WYf ′Yf ln
(u
t

)
. (45)

The matrix of the soft anomalous dimensions for I = J =
L is a sum of the Abelian and non-Abelian parts

χλλ = −4 ln
(u
s

)
+
(
t2WYf ′Yf + 2

)
ln
(u
t

)
,

χλd =
3
4
ln
(u
t

)
,

χdλ = 4 ln
(u
t

)
,

χdd = t2WYf ′Yf ln
(u
t

)
. (46)

The photon is however massless, and the corresponding
infrared divergent contributions should be accompanied
by the real soft photon radiation integrated to some res-
olution energy ωres to get an infrared safe cross section
independent on an auxiliary photon mass. In practice, the
resolution energy is much less than the W (Z) boson mass
and the massive gauge bosons are supposed to be detected
as separate particles. To study the virtual corrections in
the limit of the vanishing photon mass we follow a general
approach of the infrared evolution equations developed in
[19] (see also references therein). It is convenient to use
the auxiliary photon mass λ as a variable of the infrared
evolution equation below the electroweak scale M . The
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dependence of the virtual corrections on λ in the limit
λ � M is canceled by the contribution of the real soft
photon radiation. For ωres � M , the soft photon emission
is of the pure QED nature. Therefore, the kernel of the in-
frared evolution equation which governs the λ dependence
of the virtual corrections is Abelian. In a full analogy with
the theory of renormalization group equation all the in-
formation on the non-Abelian gauge dynamics above the
electroweak scale up to power suppressed contributions is
contained in the initial condition for this Abelian infrared
evolution equation at the point λ = M . The virtual correc-
tions at this point are given by the expressions obtained in
the beginning of the section. To fix a relevant initial condi-
tion for the evolution below the electroweak scale one has
to subtract the QED virtual correction computed with the
photon of the mass M from this result [19]. This leads to
a modification of the factor (43) and the soft anomalous
dimensions (45, 46).

The common factor for each fermion-antifermion pair
becomes

exp

[
−
(
Tf (Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f

)
(L(s) − 3l(s))

]
,

(47)
where sW = sin θW . Then we have

χ =
(
t2WYf ′Yf − 4s2

WQf ′Qf

)
ln
(u
t

)
, (48)

and the matrix of the soft anomalous dimension for I =
J = L is

χλλ = −4 ln
(u
s

)
+
(
t2WYf ′Yf − 4s2

WQf ′Qf + 2
)
ln
(u
t

)
,

χλd =
3
4
ln
(u
t

)
,

χdλ = 4 ln
(u
t

)
,

χdd =
(
t2WYf ′Yf − 4s2

WQf ′Qf

)
ln
(u
t

)
. (49)

The remaining virtual corrections are given by the QED
Sudakov exponent which satisfies the Abelian infrared
evolution equation and depends only on s and λ.

Now we can estimate the dominant one- and two-loop
logarithmic corrections. The renormalization group log-
arithms which are not included into (47) can be triv-
ially taken into account by choosing the relevant scale
of the coupling constants in the Born amplitude. At the
same time, the remaining logarithmic corrections are of
the main interest because they are supposed to dominate
the (still unknown) total two-loop electroweak corrections.
The one-loop leading and subleading logarithms can be di-
rectly obtained from (36). The corresponding corrections
to the chiral amplitudes read([

Tf (Tf + 1) + t2W
Y 2
f

4
− s2

WQ2
f + (f ↔ f ′)

]

×
[
T 3
f ′T 3

f + t2W
Yf ′Yf
4

]
(−L(s) + 3l(s)) +

{[
−4 ln

(u
s

)

+2 ln
(u
t

)
+ ln

(u
t

)
t2WYf ′Yf

]
T 3
f ′T 3

f +
3
4
ln
(u
t

)
δILδJL

+ ln
(u
t

) [
t2WYf ′Yf − 4s2

WQf ′Qf

]
×
[
T 3
f ′T 3

f + t2W
Yf ′Yf
4

]}
l(s)
)

Af ′f
IJ , (50)

where δIL = 1 for I = L and zero otherwise. The two-
loop leading (infrared) logarithms are determined by the
second order term of the expansion of the double (soft×
collinear) logarithmic part of the collinear factors (47).
The corresponding corrections to the chiral amplitudes are

1
2

(
Tf (Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f + (f ↔ f ′)

)2

×L2(s)Af ′f
IJ . (51)

The two-loop next-to-leading logarithms are generated by
the interference between the first order terms of the ex-
pansion of the double (soft×collinear) and single (soft+
collinear+renormalization group) logarithmic exponents.
The corresponding corrections to the chiral amplitudes are
of the following form

−
[
Tf (Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f + (f ↔ f ′)

]

×
{
3

[
Tf (Tf + 1) + t2W

Y 2
f

4
− s2

WQ2
f + (f ↔ f ′)

]

×
[
T 3
f ′T 3

f + t2W
Yf ′Yf
4

]
+
[
−4 ln

(u
s

)
+ 2 ln

(u
t

)

+ ln
(u
t

)
t2WYf ′Yf

]
T 3
f ′T 3

f +
3
4
ln
(u
t

)
δILδJL

+ ln
(u
t

) [
t2WYf ′Yf − 4s2

WQf ′Qf

]
×
[
T 3
f ′T 3

f + t2W
Yf ′Yf

4

]}
L(s)l(s)Af ′f

IJ . (52)

With the expression for the chiral amplitudes at hand,
we can compute the leading and subleading logarithmic
corrections to the basic observables for e+e− → ff̄ us-
ing standard formulae. Though the above approximation
is not formally valid for small angles θ < M/

√
s we can

integrate the differential cross section over all angles to
get a result with the logarithmic accuracy. Let us, for
example, consider the total cross sections of the quark-
antiquark/µ+µ− production in the e+e− annihilation. In
the two loop approximation, the leading and next-to-lead-
ing Sudakov corrections to the cross sections read

σ/σB(e+e− → QQ̄)
= 1 + 5.30 l(s) − 1.66L(s) − 12.84 l(s)L(s)
+1.92L2(s) ,

σ/σB(e+e− → qq̄)
= 1 + 20.54 l(s) − 2.17L(s) − 53.72 l(s)L(s)
+2.79L2(s) ,
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σ/σB(e+e− → µ+µ−)
= 1 + 10.09 l(s) − 1.39L(s) − 21.66 l(s)L(s)
+1.41L2(s) , (53)

where Q = u, c, t, q = d, s, b, and we use s2
W = 0.232

for numerical estimates. Numerically, L(s) = 0.07 (0.11)
and l(s) = 0.014 (0.017) respectively for

√
s = 1 TeV and

2 TeV. Here M = MW has been chosen for the infrared
cutoff and g2/16π2 = 2.7·10−3 for the SU(2) coupling. For
physical applications, the running of g and sW , the W and
Z boson mass difference and the top quark mass effects
are important in the one loop approximation. Fortunately
the first order corrections are known exactly beyond the
logarithmic approximation [25].

Clearly, for energies at 1 and 2 TeV the two loop cor-
rections are huge and amount up respectively to 5% and
7%. There is a cancellation between the leading and sub-
leading logarithms and for the above energy interval the
subleading contribution even exceeds the leading one. The
higher order leading and next-to-leading corrections how-
ever do not exceed 1% level. They can be in principle
resummed using the formulae given above.

For completeness we give a numerical estimate of cor-
rections to the cross section asymmetries. In the case of the
forward-backward asymmetry (the difference of the cross
section averaged over forward and backward semispheres
with respect to the electron beam direction divided by the
total cross section) we get

AFB/AB
FB(e

+e− → QQ̄)
= 1 − 1.23 l(s) − 0.09L(s) + 0.11 l(s)L(s) + 0.12L2(s) ,

AFB/AB
FB(e

+e− → qq̄)
= 1 + 7.16 l(s) − 0.14L(s) − 1.54 l(s)L(s) + 0.02L2(s) ,

AFB/AB
FB(e

+e− → µ+µ−)
= 1 + 5.48 l(s) − 0.04L(s) − 6.39 l(s)L(s) + 0.27L2(s) .

For the left-right asymmetry (the difference of the cross
sections of the left and right particles production divided
by the total cross section) we obtain

ALR/A
B
LR(e

+e− → QQ̄)
= 1 + 10.17 l(s) − 2.77L(s) + 6.38 l(s)L(s)

−0.91L2(s) ,

ALR/A
B
LR(e

+e− → qq̄)
= 1 + 11.66 l(s) − 1.08L(s) + 15.27 l(s)L(s)

−0.77L2(s) ,

ALR/A
B
LR(e

+e− → µ+µ−)
= 1 + 118.07 l(s) − 13.74L(s) − 1.13 l(s)L(s)

−0.78L2(s) .

Let us compare our results with results of previous anal-
yses. Our result for the one loop double logarithmic con-
tribution is in agreement with [16]. However the result
for the one loop single infrared logarithmic contribution
differs from [17]. The reason is that, in [17], only the di-
agrams with heavy virtual bosons have been taken into

account. There is an infrared safe contribution of the di-
agram with the virtual massless photon where the heavy
boson mass serves as an infrared regulator that should be
taken into account to get a complete (exponential) result.
In one-loop approximation, this contribution comes from
the box diagrams with the photon and Z boson running
inside the loop. One of the two collinear regions of these
diagrams (see Sect. 3) gives an infrared safe contribution
that should be taken into account. The contribution from
this diagram combined with real radiation has been ob-
tained in analytical form in [26]. Note that neglecting con-
tributions of this type leads also to the breakdown of the
exponentiation of the double logarithms starting from the
two-loop approximation [18].

Our result for the two-loop double logarithmic contri-
bution is in agreement with [19]. On the other hand, the
coefficients in front of the two-loop leading logarithms in
(53) with a few percent accuracy coincide with the result
of [18] where the photon contributions were not consid-
ered. This is related to the fact that the virtual photon
contribution not included to the result of [18] is suppressed
by a small factor s2

W .
The above result for the cross section should be multi-

plied by the standard factor which takes into account the
soft photon emission and the pure QED virtual correc-
tions. This factor depends on s, ωres and the initial/final
fermion masses but not on MZ,W . Note that our analysis
implies the resolution energy for the real photon emission
to be smaller than the heavy boson mass. If the resolution
energy exceeds MZ,W the analysis is more complicated
due to the fact that the radiation of real photons is not
of Poisson type because of its non-Abelian SU(2)L com-
ponent. A complete analysis of this problem in the double
logarithmic approximation is given in [19]. However, as we
have pointed out the effects of the non-Abelian component
of the photon are numerically rather small.

5 Conclusion

In the present paper, we have analyzed the asymptotic be-
havior of the Abelian form factor and four fermion ampli-
tude in the SU(N) gauge theory in two standard variants
of the Sudakov limit: with on-shell massless fermions and
massive gauge bosons and with off-shell massless fermions
and massless gauge bosons. The generalized strategy of
regions and dimensional regularization were used to ob-
tain the asymptotic expansions of one-loop diagrams that
determine the structure of the evolution equations for the
amplitudes in the Sudakov limit up to the next-to-leading
logarithmic approximation. By integrating these equations
the next-to-leading logarithms were summed up. The
method can be directly extended to the next-to-next-to-
leading logarithms. To do this one can apply expansions of
two-loop Feynman integrals within the strategy of regions
(in the case of the form factor see examples of expansions
of master scalar integrals in [13,27]) and insert two-loop
information into the evolution equations.

We have applied our results to the analysis of the elec-
troweak corrections to the process of fermion-antifermion
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pair production in the e+e− annihilation. The two-loop
leading and next-to-leading logarithmic corrections to the
chiral amplitudes which are supposed to saturate the to-
tal two-loop electroweak corrections in TeV region have
been obtained. The corresponding corrections to the to-
tal cross sections and asymmetries of the quark-antiquark
and µ+µ− production in the e+e− annihilation have been
found to be of a few percent magnitude at the energy of
1-2 TeV. The next-to-leading infrared logarithms are com-
parable and even exceed the leading ones at this scale.
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